Science: Quantum Algorithms for Predicting the Properties of Complex Materials
Abstract: A central goal in computational materials science is to find efficient methods for solving the Kohn-Sham equation. The realization of this goal would allow one to predict materials properties such as phase stability, structure and optical and dielectric properties for a wide variety of materials. Typically, a solution of the Kohn-Sham equation requires computing a set of low-lying eigenpairs. Standard methods for computing such eigenpairs require two procedures: (a) maintaining the orthogonality of an approximation space, and (b) forming approximate eigenpairs with the Rayleigh-Ritz method. These two procedures scale cubically with the number of desired eigenpairs. Recently, we presented a method, applicable to any large Hermitian eigenproblem, by which the spectrum is partitioned among distinct groups of processors. This "divide and conquer" approach serves as a parallelization scheme at the level of the solver, making it compatible with existing schemes that parallelize at a physical level and at the level of primitive operations, e.g., matrix-vector multiplication. In addition, among all processor sets, the size of any approximation subspace is reduced, thereby reducing the cost of orthogonalization and the Rayleigh-Ritz method. We will address the key aspects of the algorithm, its implementation in real space, and demonstrate the accuracy of the algorithm by computing the electronic structure of some representative materials problems.